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Abstract—Infrared imaging has the advantages of strong 
anti-interference capability, long-range imaging, and night 
imaging, and has important applications in both civilian and 
military fields. In the development of infrared-related 
equipment, a large number of infrared images under a variety 
of conditions are required as verification test data. The field 
test of infrared images requires huge manpower and material 
resources, and it is difficult to obtain full-time infrared images. 
To address the problem of insufficient infrared image samples, 
the paper introduces generative adversarial networks into the 
infrared image generation task and investigates the infrared 
image generation method based on visible images by applying 
Pix2pix networks to paired visible infrared image datasets. To 
address the problem of missing detailed information of 
infrared images generated by the Pix2pix network, the paper 
proposes a Pix2pix network based on multi-receptive field 
feature fusion and constructs a multi-receptive field feature 
extractor based on Unet++ structure; the multi-receptive field 
feature fusion mechanism of nested pixel level by level is 
proposed. Experiments show that the Pix2pix network based 
on multi-receptive field feature fusion achieves finer infrared 
texture generation. 

Keywords—Generative Adversarial Networks, infrared image 

generation, multi-receptive-field feature fusion 

I. INTRODUCTION 

During the development of infrared-related devices and 
research on infrared imaging technology, a large amount of 
infrared image data under various conditions is needed as 
material for validation tests. Deep network-based algorithms 
also need a large number of infrared images for algorithm 
training, testing, and validation. However, in most of the 
scenarios, it is very difficult to acquire infrared images using 
real images, such as satellite infrared images or military 
target infrared images, which require a lot of human and 
material resources[1], and it is impractical to acquire various 
materials in all background infrared images at the same time. 
Therefore the use of infrared simulation techniques to 
generate infrared images has important research implications. 

In order to achieve the fast and efficient generation of a 
large amount of infrared image data, this paper addresses the 
generation of heterogenous infrared images in infrared 
simulation. Since the technology of visible imager is mature 
and the data is easy and low cost to obtain, the problem of 
difficulty in obtaining infrared images can be alleviated if the 
easily available visible data can be used to generate infrared 
images.  

There are two main ways of generating infrared images 
in the mainstream. One way is to analyze and model the 
target scene, and calculate the infrared radiation of the 
material according to the theory of infrared radiation and 
combining with atmospheric transmission parameters, and 
add sensor imaging effects to the infrared radiation and then 
grayscale it to get the infrared simulation image[2]. 
However, this method has problems such as low simulation 
degree of target temperature model and tedious processing, 
which is not suitable for rapid generation of a large number 
of IR images; another method is based on generative 
adversarial networks to achieve style conversion. Jiangrong 
Xie et al. proposed to use DCGAN networks to achieve the 
butrandom generation of some simple IR target images[3], 
Yunfei Feng for IR band expansion task To study, 
CycleGAN network was used to realize the conversion of 
mid-wave infrared images to long-wave infrared images[4]. 
The texture conversion from real infrared images is more 
consistent with the distribution characteristics of textures 
than modulation by visible images, and the textures 
generated using GAN are also smoother than the simulation 
effect. Therefore, this paper will investigate how to use 
generative adversarial networks for infrared image 
generation research. 

  In this paper, the heterogenous infrared image generation 
problem of generating infrared images from visible images is 
modeled as an image translation problem between two image 
domains. Among the derivative algorithms of GAN networks 
in recent years, the algorithms mainly address the diversity 
of generated images, unpaired image translation, and high-
resolution image generation, while this paper focuses on the 
accuracy of generating infrared images from visible images, 
based on which the Pix2pix network proposed by Isola at 
CVPR 2017 is chosen[5]. the Pix2pix network is a general 
network architecture that uses the structure of conditional 
generative adversarial networks (CGAN) to solve image 
translation tasks[6]. The network is not only able to learn 
image-to-image mapping relationships but also to learn loss 
functions for specific translation tasks based on sample data 
features, making conditional generative adversarial networks 
applicable to image translation tasks. 

 The conditional generative adversarial network is the first 
time to introduce conditional labeling into the structure of a 
generative adversarial network, which somewhat improves 
the drawback of the original generative adversarial network 
that the generation pattern is too free due to any 



unconstrained. Unlike discrete labeled, text-based 
conditional adversarial networks, Pix2pix focuses on the task 
of image-to-image translation with the aim of mapping high-
resolution inputs to high-resolution output results, so Pix2pix 
uses images as conditional labels. Considering that the 
structures of the image pairs involved in the mapping are 
roughly aligned, the generator uses a multi-receptive field 
feature extractor with Unet++ structure which is similar in 
structure to an encoding-decoding network[7]. Ints input 
image is first passed through the encoding part of the 
network to reduce the resolution of the feature map, and later 
the decoding network is used to restore it to the original 
image resolution, while using cross-layer channel 
connections to enable the higher-level feature map to 
perceive the lower-level feature map The decoding network 
is then used to restore the original image resolution, while 
the cross-layer channel connections are used to enable the 
higher-level feature maps to perceive the detailed 
information of the lower-level feature maps. For the 
discriminator structure, the discriminator network of the 
original GAN is not suitable for image translation tasks 
requiring high resolution and high detail fidelity, and Pix2pix 
adopts the PatchGAN discriminator structure. The output of 
the conventional GAN network is a Boolean value of 'True' 
or 'Flase', which represents the determination of the whole 
image for the discriminator input, while the output of the 
PatchGAN discriminator is an N × N matrix, where each 
pixel in the matrix represents the determination of a block of 
M×M size corresponding to the input image perception field, 
which makes the discriminator focus more on the recovery of 
local detail information. 

In this paper, we study an infrared image generation 
method based on generative adversarial networks, using 
Pix2pix networks to automatically learn the mapping 
relationship from visible images to infrared images. For the 
problem of missing detail information of IR images 
generated by the Pix2pix network, we propose a Pix2pix 
network based on multi-receptive field feature fusion to 
further optimize the detail information of the generated IR 
images and improve the realism of the simulated images. 

In the task of heterogenous IR image generation, the 
algorithm has to ensure the accuracy of IR images generated 
from visible images and generate finer IR texture 
information as much as possible. pix2pix can basically 
achieve the task of generating IR images from visible 
images, and the generated IR image distribution has high 
consistency with the real IR images, but there are still 
samples of conversion failure. Due to the different imaging 
mechanisms, there is a big difference in the distribution 
between visible and infrared images of the same scene. 
Visible images have more distinct color features and clearer 
texture information, while infrared images have only one 
channel after grayscale quantization, and most scenes have 
more blurred edge information than visible images. In this 
paper, two contributions are made to address the problem of 
missing detail information in infrared images generated by 
the Pix2pix network as follows: 

(1) Multi-receptive field feature extractor. In order to 
enhance the feature utilization rate of smaller receptive field 
features, this paper builds a multi-receptive field feature 
extractor based on the general Unet network[8]. Unet 
extracts the image features of different receptive fields with 

the same resolution, by borrowing the model structure of 
Unet++ network. 

(2) Multi-receptive field feature fusion mechanism. 
Different from the widely used feature fusion method of 
merging on channels, this paper achieves multi-receptive 
field feature fusion by nesting multiple attention mechanism 
modules level by level and learning the weights of different 
receptive field features at a pixel level. 

II. RELATED WORK 

A. Infrared imaging influencing factors 

Infrared radiation exists in all corners of the world, and 
all objects in nature with temperatures above absolute zero 
emit infrared radiation, and the higher the surface 
temperature, the stronger the infrared radiation produced. 
The imaging effect of infrared images is mainly related to 
the scene temperature, infrared imaging equipment 
wavelength range, atmospheric transmission medium. Next, 
we will analyze the effect of temperature and wavelength on 
the infrared imaging effect. 

Figure 1 plots the spectral irradiance of the blackbody 
versus temperature and wavelength. From the figure, we can 
see that the blackbody irradiance changes with wavelength 
at different temperatures with roughly the same trend, rising 
sharply first, reaching the peak gradually decreasing, and the 
peak wavelength decreases gradually as the temperature 
increases. According to Wien's displacement law, the 
wavelength corresponding to the peak of blackbody 
irradiance is inversely proportional to the blackbody 
temperature[9]. To calculate the integral of wavelength 0 to 
infinity, the relationship between blackbody irradiance and 
temperature can be obtained, which is Boltzmann's law, as 

shown in Eq： 

                                4

0
( )M T T= σ                          (1) 

where 8 2 45.6694 10 / ( )W m k−= × �σ .Boltzmann's law 

shows that the blackbody irradiance is proportional to the 
fourth power of the temperature. 

 

Fig.1. Blackbody irradiance as a function of temperature and wavelength 

B. Generating Adversarial Network Foundation 

Generative adversarial network (GAN) is a generative 
model based on the idea of a zero-sum game. Unlike the 
traditional network model, the GAN network consists of two 
sub-networks, the generative network, and the 
discriminative network, and its model structure is shown in 
Figure 2. The goal of the generative network is to generate 



samples that match the real data distribution and apply the 
learned mapping function to the given noise. The goal of the 
discriminator is to be able to accurately identify the real 
samples from the real data distribution and the generated 
samples generated by the generator. During training, the 
generator gets feedback from the discriminator's decisions to 
further optimize the model parameters and learn how to 
better deceive the discriminator next time. Assuming that 
the real samples x conforms to the real data distribution Pr 

(x) and the hidden vectors z conforms to the defined implicit 
vector distribution Pz(z), such as uniform distribution or 
spherical Gaussian score The vector z is obtained by 
sampling the Pz(z) distribution and then input to the 
generative network to generate x'=G(z), and the generated 
data x' and the real data x are input to the discriminator 
respectively, and we expect the discriminator to have the 
accurate discriminatory ability to output the corresponding 0 
(Fake) and 1 (Real)[10]. In essence, the discriminator 
implements the function of a binary model, which can be 
trained using a cross-entropy loss function. Meanwhile, the 
generative network, on the other hand, expects the generated 
data to gradually conform to the real data distribution and be 
able to be discriminated as 1 by the discriminator network, 
based on which the loss function of the generative 
adversarial network is defined as: 

~ ~min max ( , ) [log ( )] [log(1 ( ( )))]
r zx P z P

G D
V G D E D x E D G z= + −

    
(2) 

Where ( , )V G D  is the generative adversarial loss function, 

the generative network is trained by minimizing 

( , )V G D and the discriminative network is trained by 

maximizing ( , )V G D . 

 
Fig.2. Generative adversarial network model structure 

C. Feasibility analysis of heterogenous infrared image 
generation 

This paper focuses on the transformation relationship 
between visible images corresponding to the same 
wavelength band and infrared images of the same time 
period. The proposed infrared images with a wavelength 
range of 7.5∼13 μm and a period of 14:00 are all acquired at 
the same time period using uniform shooting conditions. 
From infrared imaging theory, it is clear that different target 
objects have different emissivity and different 
corresponding infrared radiation amounts. In the traditional 
infrared simulation field, the visible light images need to be 
material segmented and the infrared radiation of each 
material in the corresponding waveband and atmospheric 
conditions are calculated separately, and it is seen that 
different materials have a physical correlation with the 
corresponding infrared image brightness distribution. 
Visible images generally have good texture information and 
contrast. Based on the scene information obtained from 
visible images, if the mapping relationship from visible 
images to IR images between different materials can be 
obtained, then the mapping relationship can be used to 

realize the generation of IR images from visible images to 
corresponding scenes. 

Generative adversarial networks have a wide range of 
applications in image generation tasks to learn the mapping 
relationship between two image domains. By building a 
generator, we can fit the complex change function from 
visible to infrared images of different materials, and can 
fully take into account the change of infrared imaging effect 
due to the interaction between infrared radiation of different 
materials. Therefore, a generative adversarial network can 
be built to realize heterogenous IR image generation, and 
the mapping function from visible to IR images can be 
obtained by the game learning between the generator and 
the discriminator. In this paper, a generator network is used 
to learn the mapping relationship between the visible image 
domain and the mid-wave infrared image domain, and 
experiments show that the generative adversarial network is 
suitable for the heterogenous infrared image generation task. 

III. INTRODUCTION OF PIX2PIX NETWORK BASED ON MULTI-
RECEPTIVE FIELD FEATURE FUSION 

A. Overall network construction 

The overall network model of the Pix2pix network based 
on multi-receptive field feature fusion designed in this paper 
is shown in Fig. 3. The generator network first extracts the 
multi-receptive field features by using Unet++, and then 
uses the multi-receptive field feature fusion module to 
automatically learn the pixel-level weights of different 
receptive field features and obtain the fused features to 
generate the corresponding IR images. The discriminator 
network has the same discriminator structure as the original 
Pix2pix network, and the PatchGAN discriminator structure 
is used. 

 

Fig.3. Structure of Pix2pix model for multi-receptive field feature fusion 

The Pix2pix network consists of a generator and a 
discriminator, with the generator denoted as a G-network 
and the discriminator denoted as a D-network. 

B. Analysis of Pix2pix network based on multi-receptive 
field feature fusion model generator construction 

In this paper, we propose a Pix2pix network based on 
multi-receptive field feature fusion for the task of generating 
infrared images from visible images, firstly, we extract 
multi-receptive field features using Unet++ network, then 
we use multi-receptive field feature fusion module to obtain 
the fused features and generate the corresponding infrared 
images, and finally, we obtain the trained transform function 
through the game learning of generator and discriminator. 

In this paper, the Unet++ network is used as a multi-
receptive field feature extractor, because the original 
structure of Unet++ was originally proposed for image 
semantic segmentation, which is equivalent to pixel-level 



semantic classification, but in this paper, the heterogenous 
infrared image generation accomplishes the task of infrared 
image grayscale prediction at the pixel level. The Unet++ 
network is applied to the image transformation task in the 
same structure as image segmentation, the main differences 
are :  

• Downsampling method: In this paper, the original 
Unet++ downsampling layer is replaced by a 
convolutional layer with a step size of 2. 

• Multi-receptive field feature processing: this paper 
adopts the Unet++ network as the multi-receptive 
field feature extractor, and adopts the multi- receptive 
field feature fusion module to fuse the extracted 
features, instead of the original Unet++ network in 
which the output of multiple up-sampled paths is 
averaged. 

• Loss function: In this paper, we use generative 
adversarial loss and L1 loss function to train the 
network, instead of the cross-entropy loss function of 
the original Unet++ network. 

The generator structure is mainly divided into 3 parts: 
the feature extractor based on the Unet++ network, the multi-
receptive field feature fusion module, and the output 
convolution layer. The base network built based on the 
Unet++ network is the experimentally validated U-net 
network, as marked by the shaded box in Figure 4, and the 
unshaded part in Figure 4 is the densely connected 
convolutional layer on the filled cross-layer connection path. 

 

Fig.4. Pix2pix based on multi-receptive field feature fusion generator 
network structure 

Feature extractor based on the Unet++ network. Unet ++ 
is a deeply supervised encoder/decoder network in which 
the encoder and decoder sub-networks are integrated 
through a series of nested dense cross-layer connectivity 
paths. The redesigned cross-layer connection paths aim to 
reduce the semantic differences between the feature maps of 
the encoder and decoder sub-networks. The underlying 
assumption behind the Unet++ architecture is to 
progressively enrich the high-resolution feature maps from 
the encoder network before fusing them with the 
corresponding semantic feature maps from the decoder 
network, thus capturing the fine-grained details of the 
foreground objects more efficiently. The network will 
handle the learning task more easily when the feature maps 
from the decoder and encoder networks are semantically 
similar. This is in contrast to the common skip connection in 
U-Net, which provides the corresponding resolution feature 
maps directly from the encoder to the decoder network, 
leading to feature fusion with large semantic differences. 

U-net ++ consists of encoders and decoders connected by 
a series of nested dense convolutional blocks. The network 
structure is shown in Figure 5(a), where the black labeled 
paths represent the original U-Net structure, the green-
labeled paths and blue labeled paths represent the dense 
connection on the cross-layer connection path, and the red 
labeled paths represent the added supervised learning 
method. As can be seen in Fig. 5, the Unet++ network is a 
feature extractor that "fills" the "hollow" U-net by restoring 
four different levels of features to the original high 
resolution through four different decoding paths. There are 
two ways to connect the features between different receptive 
fields: short connection at neighboring layers and long 
connection across layers, Figure 5(b) shows the first cross-
layer connection path of Unet++. The short neighboring 
layer connection ensures the continuity of the solid region of 
the Unet++ network (the green triangularly labeled region in 
Fig. 5(a)) during backpropagation, and the long cross-layer 
connection improves the utilization of features at different 
levels. For the fusion of features with different receptive 
fields, the U-net network connects convolutional layers with 
a convolutional kernel size of 1 × 1 after the output paths of 
different decoders, after which the average value of the 
output of all paths is calculated.The main improvement of 
the Unet++ network is to make full use of the features with 
different receptive fields, where the features with larger 
receptive fields can fully recognize larger size objects in the 
image, while the features with smaller receptive fields can 
retain the features with larger receptive fields can fully 
recognize larger objects in the image, while the features 
with smaller receptive fields can preserve the edge 
information in the image so that the features of smaller-scale 
objects are not lost. 

 

Fig.5. Unet++ model structure 

There is also a contradiction between the stronger feature 
extraction ability of the deep network and the loss of image 
edge information and local information in the image 
translation task, so for the Pix2pix network, this paper 
adopts the Unet++ structure as the feature extractor of the 
generative network, and adds the solid part of the Unet++ 
network on the basis of the U-net structure. For the 
extracted features of different receptive fields, this paper 
designs a multi-receptive field feature fusion mechanism, 
which enables the network to automatically learn the 
importance of different receptive field features. 

Figure 4 depicts the detailed network structure of the 
Unet++ network-based feature extractor. In addition to the 
shaded box labeled U-net network, the solid part of the 



Unet++ network consists of paired upsampling modules and 
feature compression modules. The upsampling module 
ensures the feasibility of long connections in the network, 
while the feature compression module is added to reduce the 
number of feature channels in order to reduce the network 
size and speed up the inference process. 

Multi-receptive field feature fusion module. The spatial 
attention mechanism and the channel attention mechanism 
are for feature aggregation in spatial and channel 
dimensions, respectively, and are not applicable to feature 
fusion of multi-receptive field features[11]. With the idea of 
attention mechanism, this paper proposes a multi-receptive 
field feature fusion module, whose structure is shown in 
Figure 6. In this paper, we adopt a nested multi-receptive 
field feature fusion approach, and design one attention 
fusion structure at a time to fuse two features with small 
differences in receptive fields, and the new features obtained 
are then fused with the larger features[12]. For the attention 
fusion layer, as shown in the lower right of Fig. 6, the 
feature maps of two features and fi are fi+1 specified, and we 
introduce a pixel-level attention mechanism module to learn 
the pixel-level weights of these two features. For the 
learning of weights, the two features of the input fusion 
block are first merged on the channel [fi , fi+1], after which 
the pixel-level attention graph is learned using a 
convolutional layer, while the mapping function restricts the 
weights in the attention graph to [0,1], and the weights are 
learned as shown in the following equation: 

1
1 ([ , ])

1
( ([ , ]))

1 i i
i i i H f f

g H f f
e +

+ −
= =

+
α                 (3) 

where g denotes the mapping function,and H denotes the 
convolution function. 

According to the obtained attention diagram iα , the 

specific fusion of features fi and fi+1 is shown in Eq: 

1 1
( , ) (1 )

i i i i i i
FeatureFuse f f f f+ += + −� �α α

         
(4) 

where the attention weight of the two features fi and fi+1 are 
negatively correlated.  

 

Fig.6. Multi-receptive field attention fusion module. 

The multi-receptive field feature fusion module fuses the 
features of different receptive fields by using a pixel-level 
attention mechanism, in which one fusion block is used for 
every two features, nested layer by layer, and its structure is 
shown in Figure 6, and the parameters of each fusion block 

are not shared. Given four features of the same size f1、f2、
f3 and f4, we first sample four convolutional layers to 
downscale the features separately and then use two-by-two 
nesting to achieve the fusion of features with different 
perceptual fields. 

Output convolution layer. The output convolutional 
layer is a convolutional layer with a convolutional kernel 
size of 3 and outputs a 3-channel image. 

Generator network parameters. The parameters of the 
G-network are shown in Table 1. The convolutional layer 
parameters (f,k,s,p) in the table indicate the number of 
convolutional kernels, size, step size, and fill size, 
respectively, and the input and output parameters (b,c,h,w) 
indicate the training batch size, number of channels, feature 
map height, and feature map width, respectively, and the 
convolutional layer parameters of the multi-receptive field 
feature fusion module have been labeled in the figure, so 
they are not described in detail in the table. 

TABLE I.  TABLE OF PARAMETERS OF THE PIX2PIX BASED ON MULTI-
RECEPTIVE FIELD FEATURE FUSION GENERATOR NETWORK 

Modules 
Convoluti-
on block 

Convolution
al layer 

parameters 

(f,k,s,p) 

Input Features 
(b,c,h,w) 

Output 

(b,c,h,w) 

Input - - (1, 3,256,256) - 

Unet++ 
Feature 
Extractor 

CB0.0 (64,4,1,2) (1, 3,256,256) (1,64,128,128) 

CCB0.1 (64,4,1,1) (1,128,128,128) (1,64,128,128) 

CCB0.2 (64,4,1,1) (1,192,128,12,8) (1,64,128,128) 

CCB0.3 (64,4,1,1) (1,256,128,128) (1,64,128,128) 

CCB0.4 (64,4,1,1) (1,320,128,128) (1,64,128,128) 

CB1.0 (128,4,1,2) (1,64,128,128) (1,128,64,64) 

CCB1.1 (128,4,1,1) (1,256,64,64) (1,128,64,64) 

CCB1.2 (128,4,1,1) (1,384,64,64) (1,128,64,64) 

CCB1.3 (128,4,1,1) (1,512,64,64) (1,128,64,64) 

DB1.0-1.3 (64,4,1,2) (1,128,64,64) (1,64,128,128) 

CB2.0 (256,4,1,2) (1,128,64,64) (1,256,32,32) 

CCB2.1 (256,4,1,1) (1,512,32,32) (1,256,32,32) 

CCB2.2 (256,4,1,1) (1,768,32,32) (1,256,32,32) 

DB2.0-2.2 (128,4,1,1) (1,256,32,32) (1,128,64,64) 

CB3.0 (512,4,1,2) (1,256,32,32) (1,512,16,16) 

CCB3.1 (512,4,1,1) (1,1024,16,16) (1,512,16,16) 

DB3.0,3.1 (512,4,1,2) (1,512,16,16) (1,256,32,32) 

CB4.0 (1024,4,1,2) (1,512,16,16) (1,1024,8,8) 

DB4.0 (512,4,1,2) (1,1024,8,8) (1,512,16,16) 

Output CCB_O (3,4,1,1) (1,32,32,32) (1,3,256,256) 

C. Pix2pix network based on multi-receptive field feature 
fusion model discriminator construction analysis 

The discriminator network is used to discriminate the 
"true or false" input, which is essentially a trainable loss 
function. Unlike the original GAN network, the D-network 
built in this paper adopts the idea of PatchGAN, and the 
output of the network is a 30×30 matrix so that each pixel 
value of the output corresponds to a 70×70 size image block 



of the input, which is able to reproduce more detailed 
information for image translation tasks. The structure of the 
D-network built in this paper is shown in Fig. 7, where the 
convolution module is the same as the G-network. 

 

Fig.7. Pix2pix discriminator network structure 

The input of the discriminator D network of Pix2pix is an 
image pair, and the visible image is stitched with the real IR 
image and the generated IR image in the third channel 
dimension, respectively, as the true sample pair and the false 
sample pair of the discriminator. the parameters of the D 
network are shown in Table 2, and the convolution layer 
parameters (f,k,s,p) in the table denote the number of 
convolution kernels, size, step size, and fill size, 
respectively, and the input and output parameters (b,c,h,w) 
denote the training batch size, number of channels, feature 
map height, and width, respectively. 

TABLE 2  NETWORK DISCRIMINATOR NETWORK PARAMETERS 

Modules 
Convoluti
on block 

Convolutional 
layer 

parameters 

(f,k,s,p) 

Input Features 
(b,c,h,w) 

Input - (1, 6,256,256) - 

Down-
sampling 

(64,4,1,2) (1, 6,256,256) (1,64,128,128) 

(128,4,1,2) (1,64,128,128) (1,128,64,64) 

(256,4,1,2) (1,128,64,64) (1,256,32,32) 

(512,4,1,1) (1,256,32,32) (1,512,31,31) 

(3,4,1,1) (1,512,31,31) (1,3,30,30) 

As can be seen from the table, the D network input is 
(batchsize, 6 , 256, 256) sample pairs, after three 
downsampling, according to the data in the table we can 
calculate the perceptual field of each value of the D network 
output matrix more than corresponding to the original 
image. In the convolutional neural network, the perceptual 
field is used to represent the size of the mapping range of 
the pixel points in the feature layer of each convolutional 
layer output relative to the input image. The perceptual field 
is calculated by the formula: 

NRF =

1,

1
1 1

1

1, 0

1

( 1) ( ), 2
n

N N

n n i

i

N

k N

RF k k RF s N
−

− −

=

=
 =

 × − − × − ≥


∏   (5) 

where NRF  denotes the perceptual field of the Nth 

convolutional layer, and similarly 
1NRF −

 denotes the 

perceptual field of the N-1th feature layer,
 nk

 
denotes the 

size of the nth convolutional kernel, and is
 
denotes the step 

size of the i-th convolutional layer. According to the 

formula, the perceptual field of each convolutional layer of 
the D-network is: 

Conv1：
1

k =4，
1

s =2， 1RF =4； 

Conv2：
2

k =4，
2

s =2， 2RF =10 

Conv3：
3

k =4，
3

s =2， 3RF =22 

Conv4：
4

k =4，
4

s =2， 4RF =46 

Conv5：
5

k =4，
5

s =2， 5RF =70 

From the above analysis, it is clear that each pixel in the 
discriminator output 30×30 matrix corresponds to an image 
block of 70×70 pixels of the original image, reflecting the 
judgment of the local true and false information of the 
image. 

D. Network loss function 

The loss function of the Pix2pix network based on multi-
receptive field feature fusion consists of the G network loss 
function and the D network loss function, and the training 
process of the network G network and D network game 

process, the goal of the G network is to minimize 
pixGAN

L  

and the goal of the D network is to maximize ( , )
pixGAN

L G D  

as shown in the following equation: 

,( , ) [log ( , )] [log(1 ( , ( )))]pixGAN V I VL G D E D V I E D V G V= + −
    (6) 

At the same time, considering that the task of G-network is 
not only to "cheat" the discriminator but also to implement 
the image translation task, so that the generated image is 
infinitely close to the real IR image in the sample pair. 
Therefore, the loss function of the G network is added to the 
L1 loss function, and the final loss functions of the G and D 
networks are shown in Eqs. 7 and 8. 

_ 1 1( ) ( ) ( ) [log(1 ( , ( )))] ( , ( ))G net pixGAN l V lL G L G L G E D V G V L I G V= + = − +λ λ
  

 (7)
 

_ ,
( ) ( ) ( [log ( , )] [log(1 ( , ( )))])

D net pixGAN V I V
L D L D E D V I E D V G V= − = − + −

     
(8) 

where λ is the weight of the loss term 
1
( , ( ))

l
L I G V . 

The loss function of the G-network is constrained by a 
loss so that the generated IR image distribution matches the 
target image distribution, and by b loss so that the generated 
IR image is consistent with the target image at the pixel 
level in terms of grayscale. 

IV. MODEL TRAINING AND EXPERIMENTAL  RESULTS 

ANALYSIS 

The dataset used in the experiments is the Kaist lab 
release in-vehicle road scene dataset. The infrared images in 
the dataset are taken by FLIR infrared camera in the range 
of 7.5~13um, and the selected time period is 14:00, while 
the visible images have the same structure and one-to-one 
matching with the corresponding infrared images. The 
scenes of the whole dataset have some similarities, 
including scenery such as roads, trees, grass, vehicles, and a 
small amount of pedestrian interference. The resolution of 
the images is 256×256. The training dataset contains 2500 
pairs of visible-IR image samples and the test dataset has 
500 pairs. 



For the training parameters, the batchsize is set to 1 in 
this paper, and the Adam optimizer is used in this paper, 

with 
1

β 、
2

β  set to 0.5 and 0.999, respectively. 

According to our built Pix2pix network based on multi-
receptive field feature fusion, the loss functions of generator 
and discriminator are shown in Fig. 8 and Fig. 9, 
respectively, where the generator loss function and L1 loss 
function in been kept decreasing and the training process is 
relatively stable. The discriminator loss starts as the 
generator structure of the Pix2pix network based on multi-
receptive field feature fusion is more complex compared to 
the discriminator network, and converges more slowly 
compared to the discriminator network, and the 
discriminator network loss is very small at the beginning, 
and with the gradual enhancement of the fitting ability of the 
generator network, the discriminator network loss slowly 
becomes larger and finally converges to the theoretical 

equilibrium point log(1-0.5) ≈ 0.7 or so. 

 

Fig.8. Pix2pix network based on multi-receptive field feature fusion 
generator loss curve. 

 
Fig.9. Pix2pix network based on multi-receptive field feature fusion 

discriminator loss curve 

In order to compare the effect of Unet++ as a generator, 
we use the pix2pix model with Unet as a network generator 
to experimentally compare with the Unet++ model under the 
same data set. the trend of the generators and discriminators 
of the pix2pix model with Unet as a generator during the 
training process is shown in Figure 10 and Figure 11. 

 
Fig.10. Pix2pix generator loss curve 

 
Fig.11. Pix2pix discriminator loss curve. 

By comparison, it was found that the Pix2pix network 
based on multi-receptive field feature fusion converged after 
60,000 iterations, and the training speed of the Pix2pix 
network based on multi-receptive field feature fusion was 
significantly faster compared to the convergence of the 
Pix2pix network in 140,000 steps. 

The trained network was used to test the data in the test 
set, and the results obtained are shown in Figure 12, where 
the first column is the visible image, the second column is 
the real infrared image corresponding to the visible image, 
the third column is the infrared image generated by the 
Pix2pix network, and the fourth column is the infrared 
image generated by the Pix2pix network based on multi-
receptive field feature fusion. In the first row, the Pix2pix 
model does not generate the contour information of the car 
owner, and the edge information of the rear car is blurred; in 
the second row, the roof edge of the car is not generated 
smoothly; in the third row, there are two pedestrians in the 
scene but we can only observe one pedestrian information 
after generation. In the third row, there are two pedestrians 
in the scene but we can only observe one pedestrian after 
generation. The comparison shows that the multi-receptive 
feature fusion network achieves more accurate detail 
recovery. 

 
Fig.12. Experimental results of Pix2pix and Pix2pix based on multi-

receptive field feature fusion 

TABLE 3 QUANTITATIVE ANALYSIS OF THE PERFORMANCE OF PIX2PIX 

AND PIX2PIX BASED ON MULTI-RECEPTIVE FIELD FEATURE FUSION. 

Models SSIM PSNR 

Pix2pix 0.793 26.646 

Pix2pix based on multi-
receptive field feature fusion 

0.861 28.709 



In this paper, the attention maps of different receptive 
field features learned by the multi-receptive field feature 
fusion module are visualized as shown in Fig. 13 and Fig. 
14. (a) and (b) are the visible image and the corresponding 
infrared image, respectively, and (c), (d), (e) and (f) are the 
attention maps of features with small to large receptive 
fields, respectively.  

 

(a)                   (b) 

 
(c)               (d)                (e)               (f) 

Fig.13. The fused attention of different receptive field features1 

 

(a)            (b) 

 
(c)               (d)                (e)               (f) 

Fig.14. The fused attention of different receptive field features2 

From the figures, we can see that the attention maps 
corresponding to features with smaller receptive fields focus 
more on the texture, local edges of the images, while the 
attention maps corresponding to features with larger 
receptive fields focus on the larger contour information of 
the images, which have greater structural similarity with the 
infrared images. 

V. CONCLUSION 

In this paper, we propose a Pix2pix network based on 
multi-receptive field feature fusion for heterogenous 

infrared image generation task, build a multi-receptive field 
feature extraction based on Unet++ network, design a multi-
receptive field feature fusion mechanism, and 
experimentally show that compared to existing pix2pix 
networks, the pix2pix based on multi-receptive field feature 
fusion has higher performance and has greater structural 
similarity with the infrared images. 
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